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Abstract—A chaotic system with measurable state variables fewer than the degrees of freedom of the system is
identified with the Artificial Neural Network (ANN) method combined with dynamic training. Instead of using the
usual method of Sum of Square Errors (SSE), the identified models are validated with the return maps (embedded
trajectories), the largest Lyapunov exponent, and the correlation dimension when there is no exogenous input, and
bifurcation diagram when there is an exogenous input. This method is demonstrated for nonisothermal, irreversible,

first-order, series reaction A—B —C ina CSTR.
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INTRODUCTION

Complicated dynamic behavior occurs in many chemical pro-
cesses involving chemical reactions, heat and mass transfer, sepa-
rations and fluid flow because of their strong nonlinearity. Process
engineers usually want to keep process conditions stable and under
control to obtain a product with desired specifications of uniform
properties. Very often in industrial processes, however, unexpected
complex dynamic behavior is encountered even without external
disturbances because of the inherent nonlinearity of the processes.
In the past, a considerable number of studies have been carried out
for processes showing multiple steady states, oscillatory behavior
and chaos [Jorgensen and Aris, Coworkers, 1983, 1986; Doedel
and Coworkers, 1986; Hudson and Coworkers, 1984, 1986, 1991;
Lynch, 1992, 1993; Elnashaie et al., 1994, 1995; Ray and Cowork-
ers, 1981, 1984, 1989, 1992, 1995, 1996]. Most of the studies are
based on the mathematical models of systems derived from gov-
erning physical laws. In actual industrial processes, however, it is
usually very difficult to obtain suitable physical models of pro-
cesses because of both the complexity of the processes and the lack
or inaccuracy of the system parameters. Even if obtained, the mod-
els dertved from first principles are too mathematically involved
and acquires too excessive computation to be performed online for
many industrial applications such as in control and optimization.
Another recourse is to use black box models determined by system
identification techniques. Once models are obtained, they can be
used as the surrogate models for prediction, control and optimization
of the processes. Well-known stochastic difference equation models
such as (N) ARMAX model, Artificial Neural Network (ANN) mod-
el and continuous-time model (i.e., set of ordinary differential equa-
tions) are used as basis models in this approach. Recently, ANN mod-
el has been widely used in process identification and control be-
cause of its ability to describe nonlinear systems. It generally shows
better prediction than linear stochastic difference equation models.
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It can even describe steady state multiplicity and oscillatory behav-
ior of the state variables of the system, and also provide the pa-
rameter ranges that lead to these types of behavior. This inherent
capability of ANN is due mainly to the combination of nonlinear
transfer functions used for each node. In many actual industrial pro-
cesses, 1t 1s usually impossible to measure all state variables of the
system. Reconstruction method [Packard et al., 1980, Takens, 1981;
Sauer et al., 1991] can be applied to alleviate this physical limita-
tion. From reconstructed state vectors of the system, we can recon-
struct an attractor that is topologically equivalent to the attractor com-
posed of the original state vectors of the system, and the recon-
structed attractor will retain the dynamical invariants of the original
attractor such as Lyapunov exponents, fractal dimension and entropy,
if the embedding dimension is larger than twice the box-counting
dimension of the original attractor [Sauer et al., 1991]. When ANN
1s combined with the dynamic training method based on the histori-
cal database of available state variables, it can also serve as a pow-
erful tool to describe and predict the original dynamic behavior of
the system, even in the case that the number of measurable state
variables is less than the degrees of freedom of the system.

In the black-box model approach, regardless of the structure of
basis models and the identification method used to get model para-
meters, the validation of an estimated model is one of the most im-
portant steps. The validation criteria to be satisfied depend on the
characteristics of the system and also on the final application ob-
jective of the model. A trivial way of validating an identified model
is to compare the time series of the original system with the time
series generated by the model and to calculate the mean square errors
between them. However, this criterion 1s just a necessary condition
for an identified model to capture the dynamical properties of the
system; it is definitely not sufficient. In case of a chaotic system,
although the nitial prediction of an identified model can be very
accurate, predicted values diverge from the original time series at
much later prediction time no matter how good the model is. This
1s due to the inaccuracies in the model and the existence of positive
Lyapunov exponents. Because nearby trajectories diverge locally
in state-space for a chaotic system, the initial error due to the model-
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ing error, however small, is magnified. The model generated time
series thus becomes completely different from the original time se-
ries in the long run. Consequently, for a chaotic system, mere com-
parison of time series and calculation of the mean square error does
not necessarily give useful information for the validation of an iden-
tified model. Therefore, more sophisticated criteria are required.
One of the criteria is to compare the reconstructed attractors. Be-
cause there exists a smooth invertible transformation between the
original states and the reconstructed states with appropriately cho-
sen delay time and embedding dimension, we can check if an iden-
tified model captures the original dynamic behavior of the system
by comparing the reconstructed attractor from the time series of the
original system with that from the model-generated by time series.
In many cases, however, although the location and the overall shape
of the reconstructed attractors look similar and thus the dynamic
behavior of the system seems to have been reasonably captured,
detailed characteristics such as the density of trajectories in some
region of the attractor and the local divergence rate of nearby tra-
Jjectories are somewhat different. Therefore, other criteria like Ly-
apunov exponent and correlation dimension that quantify numeri-
cally the matching between the dynamic behavior are also required.
In nonlinear control systems, it is of primary importance to predict
qualitative changes in the system behavior as a control parameter
is varied. Because a bifurcation diagram is the plotting of steady
state solutions of a system over a range of parameter values, it gives
needed information on the systems nonlinear dynamical phenom-
ena. Therefore, in case an identified model is used for control pur-
poses, checking whether the model reproduces the bifurcation pat-
tern of the original system or not can be a useful validation criterion.
There are many related papers available in the literature (some of
the papers are listed in Reference, from Abarbanel et al. to Wolf et
al.).

In this paper, we identify a chaotic system with measurable state
variable fewer than the degrees of freedom of the system and vali-
date the identified models with the criteria used for nonlinear dy-
namics instead of SSE. We do this through the following example.

PROCESS MODEL

To show how the technique applies to real processes, and also to
show the step-by-step procedure involved and the various compu-
tational techniques used, we consider the dynamic behavior oc-
curring in a nonisothermal CSTR with two irreversible consecutive
first-order reactions, A —B—C: the first exothermic, the second
endothermic. We pick the reaction system described by the follow-
ing dimensionless differential equations used by Kahlert et al. [1981].
Although we assume that these equations represent the system we
study, we are not supposed to know these equations explicitly.

dx, _, X;

m =1-x, Daxlexp|:l+ng

dx, =—%, +Dax,ex [ X5 i|—DaSX ex [ KX, J

dt : 1exp 1+ex, 26XP 1+ex,

dX3 X3 KX3

i — — _
i X, DaBXleXp[]"rSXj DaBaSXZeXP[l"FSXJ B(x;—u)

where the variables x; and X, denote the dimensionless concentra-
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Fig. 1. Bifurcation diagram of the system.

tions of species A and B, x; is the dimensionless temperature in the
reactor, Da is the Damkahler number, € is the dimensionless activa-
tion energy, S is the ratio of the two rate constants, K is the ratio of
activation energies, B is the dimensionless adiabatic temperature
rise, o 1s the ratio of heat effects, [3 is the dimensionless heat transfer
coefficient, and u is the dimensionless coolant bath temperature and
can be viewed as an externally manipulatable variable. The bifur-
cation analysis of the system equation is carried out by using numer-
ical continuation techniques which are implemented in the software
package AUTO [Doedel, 1986]. From the analysis, we can obtain
the bifurcation diagram in Fig. 1 which classifies the parameter space
into regions where qualitatively different dynamic behavior is ob-
served.

When the system parameter values are Da=0.26, e=0.0, S=0.5, k=
1.0, B=57.77, 0=0.42, and 3=7.9999, the bifurcation diagram is ob-
tained with control input # as the bifurcation parameter. The hori-
zontal axis is the bifurcation parameter # and the vertical axis is state
variable x; itself for stationary solutions and the maximum value
of state variable X, for periodic solutions. There is a Hopf bifurca-
tion point indicated by solid square at u=0.5027. It represents the
possible onset of oscillatory behavior along a branch of solutions.
At this point, the Jacobian matrix of the system equations has a pair
of purely imaginary eigenvalues. Solid triangles denote period dou-
bling bifurcation points. These points are characterized by a Flo-
quet multiplier leaving or entering the unit circle at “—1” When the
periodic branch is traced, it loses stability at this point, and a new
periodic branch with double period emerges. This period doubling
can occur repeatedly and lead to deterministic chaos. This is the
period-doubling route to chaos and provides a possible scenario lead-
ing to chaos. In Fig. 1, only the first few members of the periodic
doubling cascade are shown. Although AUTO based on numerical
continuation techniques can locate period doubling bifurcation points,
it cannot be used to detect the exact location of chaotic oscillation.
It can still provide, however, useful bounds for the domain of exist-
ence of chaos. From Fig. 1, we can infer that chaos may emerge
somewhere around 1=0.0. To check this, we simulated the system
equations when the system parameter values are Da=0.26, €=0.0,
S=0.5, k=1.0, B=57.77, 0=0.42, =7.9999 as before, and u=0.0,
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Fig. 2. 3-D phase portrait of the system.

that 1s, when there is no control action. The simulation was carried
out on IBM RS6000/370 using the IMSL subroutine ode adams
gear. Fig. 2 shows the 3-D phase portrait of the system.

In Fig. 2, we see that the system demonstrates deterministic chaos.
However, mere inspection of the attractor does not provide conclu-
sive evidence on the existence of chaos since an orbit with large
period can look similar in the phase plane. We can check the de-
terministic chaos by calculating the largest Lyapunov exponent and
correlation dimension. The calculation was carried out for the time
series data of the system using in-house implementations of the
Wolf’s algorithm [Wolf et al., 1985] for the largest Lyapunov ex-
ponent and the Grassberger and Procaccia algorithm [Grassberger
and Procaccia, 1983] for correlation dimension. The obtained val-
ues are 0.00446 for the largest Lyapunov exponent and 1.535 for
correlation dimension as summarized in Table 1.

SYSTEM IDENTIFICATION AND
MODEL VALIDATION

In ANN, important steps are in the selection of appropriate num-
ber of layers and of neurons in each layer, and the choice of the trans-
fer function used for each neuron and the training algorithm in order
to obtain a good identified model. Usually, a trial and error proce-
dure based on the criterion of minimization of sum of squares of
ANN training errors is used for this purpose. For chaotic systems,
however, this criterion may not provide useful information since
identified models can show different dynamical behavior even though
the training errors are roughly the same. Therefore, we validate iden-
tified models with the criteria such as return maps, the largest Ly-
apunov exponent, correlation dimension and bifurcation diagram
nstead of SSE. Then we determine the optimal ANN model describ-
ing the systems nonlinear dynamical behavior.

In this paper, we assume that not all state variables are measur-
able, which is often the case in many actual industrial processes.
We assume only one state variable X, (temperature) is measurable.
We try the three layer feed forward neural network combined with
the dynamic training method based on the phase space reconstruc-
tion method to describe the chaotic system, and determine the opti-
mal model by adapting only both the number of inputs to the ANN
and the number of neurons in the hidden layer. The inputs to the
ANN consist of historical database of the state variable x, when
there 1s no exogenous input (1), and those of both the state variable
x, and control mnput (u) in case exogenous input (1) exists. Fach
neuron in the hidden layer has the sigmoidal activation function,

Fig. 3. Schematic representation of ANN in case of no exogenous
input.

while the linear activation function is used for the output layer. The
biases of the neurons in the input layer are assumed to be zero. The
dynamic training method reviewed by Bhat and McAvoy [1990]
with Levenberg-Marquardt optimization algorithm is used to train
the network, and the training was carried out on DEC Alpha Serv-
er2100 using MATLAB.
1. In Case of No Exogenous Input

We now determine the optimal ANN model which best describes
the chaotic behavior of the system itself at specified parameter values
when there is no control action (u=0). Test ANN models used can
be expressed as follows and the schematic representation of the mod-
elsis shown in Fig. 3:

X3 K] =1x5[k— 1], x3[k=2], ..., X;[k—m])

where m is the number of delayed inputs, ie., embedding dimen-
sion.

To train the test ANN models, a data set is generated from the
system equation in section 2 with sampling period of 0.001 dimen-
sionless time when only state variable x, (temperature) is measur-
able. This corresponds to the time delay between delayed inputs in
the test ANN models. SSE is used to train the ANN models. First
we check if the identified models capture the dynamic behavior of
the original system by return maps. The time series data are assumed
to lie on Poincaré section. Among an enormous number of candi-
dates having roughly the same SSE, we found three candidates by
trial and error which seem to describe the return maps of the ori-
ginal system closely. The number of delayed nputs(m) is 8 for all

x3[k+2]

x3[k]
Fig. 4. Second return map of the original system.
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X3[k+2]

x3[K]
Fig. 5. Second return map of the ANN with h=3.

X3[k+2]

x3[k]
Fig. 6. Second return map of the ANN with h=4.

x3[k+2]
[o)]

x3[K]
Fig. 7. Second return map of the ANN with h=5.

candidates, but the number of hidden nodes(h) is 3, 4 and 5, re-
spectively. Fig. 4 denotes the second return map of the original sys-
tem reconstructed from the time series of the state variable x;, and
Figs. 5-7 show the second return maps of the time series generated
from the candidate models.
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Table 1. Summary of the largest Lyapunov exponent and corre-
lation dimension

The largest Correlation

Lyapunov exponent dimension
Original system 0.00446 1.535
ANN with h=3 0.03824 2.127
ANN with h=4 0.002247 1.157
ANN with h=5 0.0197 1.078

In the figures, we find that the overall shape and the location of
the return maps of the ANN with 4 and 5 hidden nodes are close
to those of the return map of the original system. However, because
the detailed characteristics of the return maps are somewhat differ-
ent, we also calculate the largest Lyapunov exponent and correlation
dimension to check the matching between the dynamics quantita-
tively. The calculations were carried out by using the previous meth-
od, and the obtained values are summarized in Table 1. From the
results, we can conclude that the ANNs with 8 delayed mputs and
4 or 5 hidden nodes are the possible models to describe the chaotic
behavior of the original system.

2. In Case of Exogenous Input

In this case, we validate identified models by checking if the mod-
els can predict the qualitative changes in the nonlinear behavior of
the original system as the control input is varied. This can be done
by bifurcation analysis. By checking where and how to bifurcate
n bifurcation diagrams, we can determine the number of delayed
mputs, delayed exogenous (control) inputs and hidden nodes of the
optimal model which reproduces most faithfully the bifurcation pat-
tern of the original system. Test ANN models can be expressed as
follows and a schematic representation of the models is shown in
Fig. 8.

Xs[K]=1(x5[k—1], X5[k=2], ..., x;[k—m], u[k—1], u[k=2], ..., u[k—n])

where m is the number of delayed inputs, and n is the number of
delayed exogenous inputs.

To identify the test ANN models, the nput/output data set in Fig.
9 and 10 1s generated from the system equation in section 2. The
sampling time from the equation is 0.001 dimensionless time, cor-
responding to the time delay between two successive data points in

x3k]

Fig. 8. Schematic representation of ANN in case of exogenous in-
put.
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Fig. 9. Input data used in the identification in case of exogenous
input.
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Fig. 10. Output data used in the identification in case of exogenous
input.
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Fig. 11. Original system’s bifurcation diagram.

the above test ANN models. The input used is composed of ran-
dom numbers between O and 1 that are held constant for 0.01 di-

mensionless time.

Among an enormous number of candidates, we found three can-
didates by trial and error which seem to reproduce the bifurcation
pattern of the original system closely. Fig. 11 shows the bifurcation
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Fig. 12. Bifurcation diagram of the ANN with (m, n, h)=(8, 5, 7).

55

:

0 0.2 04 0.6 0.8 1
Control u

Fig. 13. Bifurcation diagram of the ANN with (m, n, h)=(8, 5, 8).
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Fig. 14. Bifurcation diagram of the ANN with (m, n, h)=(8, 5, 9).
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diagram of the original system and Figs. 12-14 denote the bifurca-
tion diagrams generated from the time series of the candidate mod-
els when the number of delayed inputs (im) is 8 and the number of
delayed exogenous inputs(n) is 5, but the number of hidden nodes(h)
is 7, 8 and 9, respectively. We observe that the overall shape, the
scale and the location of bifurcation of the ANN model with 8 hid-
den nodes are the closest to those of the original system. Note that
the bifurcation diagrams show somewhat different behavior although
the SSEs in ANN training are roughly 0.002 for all cases.

CONCLUSIONS

The identification and validation issues occurring in the chaotic
system with observable state variable less than the degrees of free-
dom of the system are considered. ANN models are used as basis
models. The technique is demonstrated through the nonisothermal,
nreversible, first-order, series reaction A—B—C m a CSTR. In
chaotic systems, because of the inaccuracies in models and the exist-
ence of positive Lyapunov exponents, the direct comparison of time
series and calculation of SSE does not give much information for
validation purposes. Therefore, more sophisticated criteria, such as
return maps, Lyapunov exponents and correlation dimension in case
of no exogenous input, and bifurcation diagram in case of exoge-
nous mput, should be used to validate the identified models. Then
from the results, we can determine the optimal number of delayed
(exogenous) inputs and hidden nodes, leading to the validation of
the dynamic model.
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NOMENCLATURE

x, :dimensionless concentrations of species A
: dimensionless concentrations of species B
: dimensionless temperature in the reactor
a : Damkoéhler number
: dimensionless activation energy
: ratio of the two rate constants
: ratio of activation energies
: dimensionless adiabatic temperature rise
: ratio of heat effects
: dimensionless heat transfer coefficient
: dimensionless coolant bath temperature
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