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Abst rac t -A chaotic system with measurable state variables fewer than tile degrees of freedom of tile system is 
identified witil tile Artificial Neural Network (ANN) meflaod combined witil dynamic training. Instead of using tile 
usual method of Sum of Square Errors (SSE), the identified models axe validated with the return maps (embedded 
trajectories), the largest Lyapunov exponent, and tile correlation dimension when there is no exogenous input, and 
bifurcation diagram when there is an exogenous input. This meflaod is demonstrated for nonisothermal, irreversible, 
first-order, series reaction A ~ B  -->C in a CSTR. 
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INTRODUCTION 

Complicated dynamic behavior occurs in many chemical pro- 
cesses involving chemical reactions, heat and mass transfer, sepa- 
rations and fluid flow because of their strong nonlinearity. Process 
engineers usually want to keep process conditions stable and under 
control to obtain a product with desired sloecifications of unitbrm 
properties. Very often in industrial processes, however, unexpected 
complex dynamic behavior is encountered even without external 
disturbances because of tile inherent nonlinearity of tile processes. 
In tile past, a considerable number of studies have been carried out 
for processes showing multiple steady states, oscillatory behavior 
and chaos [Jorgensen and Aris, Coworkers, 1983, 1986; Doedel 
and Coworkers, 1986; Hudson and Coworkers, 1984, 1986, 1991; 
Lynch, 1992, 1993; ElnashaJe et al., 1994, 1995; Ray and Cowork- 
ers, 1981, 1984, 1989, 1992, 1995, 1996]. Most of the s~_udies a-e 
based on tile mathematical models of E'vstems derived from gov- 
eming physical laws. In actual industrial processes, however, it is 
usually very difficult to obtain suitable physicaJ models of pro- 
ecsses because of both tile complexity of tile processes and tile lack 
or inaccuracy of tile ~vstem parameters. Even it" obtained, tile mod- 
els derived from first principles are too mathematically involved 
and acquires too excessive computation to be performed online for 
ma W industrial applications such as in control and optimization. 
Another recourse is to use black box models determined by sTstem 
identification techniques. Once models are obtained, they can be 
used as tile surrogate models for prediction, control and optimization 
of tile processes. Well-known stochastic difference equation models 
such as (N) ARMAX model, Al-tk]ciaJ NeuraJ Network (ANN) mod- 
el and continuous-tkne model (i.e., set of ordinary diff'erentiaJ equa- 
tions) are used as basis models in this approach. Recently, ANN mod- 
al has been widely used in process identification and control be- 
cause of its ability to describe nonlinear gvstems. It generaJly shows 
better prediction than linear stochastic difference equation models. 
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It can even describe steady state multiplicity and oscillatory behav- 
ior of the state variables of the ~'vstem, and also provide the pa- 
rasneter ranges that lead to these types of behavior This inherent 
capability of ANN is due mainly to the combination of nonlmea- 
trans:fer functions used for each node. In ma W actual induslrial pro- 
cesses, it is usually impossible to measure all state variables of the 
~vstem. Reconstxuction method [Packard et al., 1980; Takens, 1981; 
Sauer et al., 1991] can be applied to alleviate INs physicaJ limita- 
tion. From reconstxucted state vectors of the ~'vstem, we can recon- 
s~uct an attractor that is topologically equivaJent to the at/factor com- 
posed of the original state vectors of the ~'vstem, and the recon- 
s~ucted attractor will retain the dynamical invariants of the original 
attractor such as Lyapunov exponents, fractaJ dimension and entropy, 
it" the embedding dimension is larger than twice the box-counting 
dimension of the original attractor [Sauer et aJ., 1991]. When ANN 
is combined with the dynamic training method based on the histori- 
caJ database of available s~te variables, it can also serve as a pow- 
erful tool to describe and predict the original dynamic behavior of 
the system, even in the case that the number of measurable state 
variables is less than tile degrees of freedom of the sTstem. 

In tile black-box model approach, regardless of tile stJ-ucture of 
basis models and tile identification method used to get model para- 
meters, tile validation of an estimated model is one of tile most im- 
portant steps. The validation criteria to be satisfied depend on tile 
characteristics of tile g'vstem and also on tile fmaJ application ob- 
jective of tile model. A trivial way of validating an identified model 
is to compare tile time series of tile original sTstem with tile time 
series generated by tile model and to caJculate tile mean square errors 
between them. However, INs criterion is just a necessary condition 
for an identified model to capture tile dynamical properties of tile 
s~stem; it is definitely not sufficient. In case of a chaotic system, 
although tile initial prediction of an identified model can be very 
accurate, predicted values diverge from tile original time series at 
much later prediction time no matter how good tile model is. This 
is due to tile inaccuracies in tile model and tile existence of positive 
Lyapunov exponents. Because nearby trajectories diverge locally 
in s~te-space for a chaotic s~stem, tile initial error due to tile model- 
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Ug error, however small, is magnified. The model generated time 
series thus becomes completely different from the original time se- 
ries in the long run. Consequently, for a chaotic system, mere com- 
parison of tZme series and calculation of the mean square error does 
not necessarily give useful U~brmafion for the validation of an iden- 
tified model. Therefore, more sophisticated criteria are required. 
One of the criteria is to compare the reconstructed attJ-actors. Be- 
cause there exists a smooth Uvertible lransformafion between the 
original states and the reconstructed states with appropriately cho- 
sen delay time and embedding dimension, we can check it" an iden- 
tified model captures the original dynamic behavior of the sTstem 
by comparing the reconstructed attJ-actor from the time series of the 
original ~vstem with that from the model-generated by time series. 
In many cases, however, aJthough the location and the overall sha W 
of the reconstructed attractors look similar and thus the dynamic 
behavior of the sTstem seems to have been reasonably captured, 
detailed characteristics such as the density of trajectories in some 
region of the attJ-actor and the local divergence rate of nearby tJ-a- 
jectories are somewhat different. Therefore, other criteria like Ly- 
apunov exponent and correlation dimension that quantify numeri- 
caJly the matching between the dynamic behavior are also required. 
In nonlinear contJ-ol sTstems, it is of primary impoaance to predict 
quaJitative changes in the ~vstem behavior as a control parameter 
is varied. Because a bifurcation diagram is the plotting of steady 
s~te solutions of a ~vstem over a range of parameter values, it gives 
needed U~brmafion on the ~vstems nonlinear dynamical phenom- 
ena. Therefore, in case an identified model is used for contJ-ol pur- 
poses, checking whether the model reproduces the bifurcation pat- 
tern of the original ~vstem or not can be a useful validation criterion. 
There are many related papers available in the literature (some of 
the papers are listed in Reference, from Abarbanel et al. to Wolf et 
al.). 

In this paper, we identify a chaotic s~stem with measurable state 
variable fewer than the degrees of freedom of the ~vstem and vali- 
date the identified models with the criteria used for nonlinear dy- 
namics instead of SSE. We do this through the following example. 

PROCESS M O D E L  

To show how the technique applies to real processes, and also to 
show the step-by-step procedure involved and the various compu- 
tational techniques used, we consider the dynamic behavior oc- 
cuning in a nonisothermaJ CSTR with two irreversible consecutive 
first-order reactions, A --'B----'C: the first exothennic, the second 
endothermic. We pick the reaction s~stem described by the follow- 
Ug dimensionless differential equations used by KaNert et aJ. [1981 ]. 
Although we assume that these equations represent the s~stem we 
study, we are not supposed to know these equations explicitly. 

~ t  1 = I - x I - D a X l e X P [ l @ x 3 1  

x 3 Kx 3 
~ t  2 =-x2 +DaXleXP[li-~ex31-DaSx2exP[li-~ex31 

__ X 3  I ( X  3 

~ t  3 - -x3  +DaBXleXp[ l'i-~ex31-DaBt~Sx2exp[ li-~ex31-[3(x3-u) 

where the variables Xl and N denote the dimensionless concentJ-a- 
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Fig. 1. Bifurcation diagram of the system. 
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tions of species A and B, x3 is the dimensionless temperature in the 
reactor, Da is the DamkOhler number, E is the dimensionless activa- 
tion energy, S is the ratio of the two rate constants, ~: is the ratio of 
activation energies, B is the dimensionless adiabatic temperature 
rise, c~ is the ratio of heat effects, 13 is the dimensionless heat lransfer 
coefficient, and u is the dimensionless coolant bath temwrature and 
can be viewed as an externally manipulatable variable. The bifur- 
cation anaJysis of the Evstem equation is camed out by using numer- 
ical continuation techniques which are implemented in the software 
package AUTO [Doedel, 1986]. From the analysis, we can obtain 
the bifurcation diagram in Fig. 1 which classifies the parameter space 
into regions where qualitatively different dynamic behavior is ob- 
served. 

When the Evstem parameter values are Da=0.26, e=0.0, S=0.5, lc = 
1.0, B=57.77, c~=0.42, and 13=7.9999, the bifurcation diagram is ob- 
tained with contJ-ol input u as the bifurcation parameter. The hori- 
zontal axis is the bifurcation parameter u and the verdcaJ axis is s~te 
variable x3 itself for stationary solutions and the maximum value 
of state variable x3 for periodic solutions. There is a Hopf bifurca- 
tion pout  indicated by solid square at u=0.5027. It represents the 
possible onset of oscillatory behavior along a branch of solutions. 
At this pout, the Jacobian mat~x of the Evstem equations has a pair 
of purely imaginary eigenvaJues. Solid triangles denote period dou- 
bling bifurcation pouts. These pouts are characterized by a Flo- 
quet multiplier leaving or entering the unit circle at "-1~' When the 
periodic branch is lraced, it loses stability at this pout, and a new 
periodic branch with double period emerges. This period doubling 
can occur repeatedly and lead to deterministic chaos. This is the 
period-doubling route to chaos and provides a possible scenario lead- 
Ug to chaos. In Fig. 1, only the first few members of the periodic 
doubling cascade are shown. Although AUTO based on numerical 
continualion techniques can locate period doubling bifurcation pouts, 
it cannot be used to detect the exact location of chaotic oscillation. 
It can still provide, however, useful bounds for the domain of exist- 
ence of chaos. From Fig. 1, we can inter that chaos may emerge 
somewhere around u=0.0. To check this, we simulated the Evstem 
equations when the Evstem parameter values are Da=0.26, e=0.0, 
S=0.5, ~:=1.0, B=57.77, ~=0.42, ~=7.9999 as before, and u=0.0, 
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Fig. 2. 3-D phase portrait of  the system. 
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Fig. 3. Schematic representation of ANN in case of no exogenous 
input. 

that is, when there is no control action. The simulation was carried 
out on IBM RS6000/370 using flae IMSL sxlbroutLne ode_adam~ 
gear. Fig. 2 shows flae 3-D phase pom-ait of flae system. 

In Fig. 2, we see that flae %~vstem demon~u-ates detelminis~ic chaos. 
However, mere inspection of flae attractor does not provide conclu- 
sive evidence on flae existence of chaos since an orbit wifla large 
period can look similar in the phase plane. We can check flae de- 
terministic chaos by calculatLng flae largest Lyapunov exponent and 
correlation dimension. The calculation was carried out for flae time 
series data of flae system using in-house implementations of flae 
Wolf's algorithm [Wolf et al., 1985] for flae largest Lyapunov ex- 
ponent and flae Grassberger and Procaccia algorithm [Grassberger 
and Procaccia, 1983] for correlation dimension. The obtained val- 
ues are 0.00446 for flae largest Lyapunov exponent and 1.535 for 
correlation dimension as summarized in Table 1. 

S Y S T E M  I D E N T I F I C A T I O N  A N D  
M O D E L  V A L I D A T I O N  

In ANN, important steps are in flae selection of appropriate num- 
of layers and of neurons in each layer, and flae choice of flae trans- 

fer function used for each neuron and the training algorithm in order 
to obtain a good identified model. Usxlally, a trial and error proce- 
dure based on flae criterion of minimization of sxlm of squares of 
ANN t~aining errors is used for this purpose. For chaotic slzstems, 
however, this criterion may not provide useful intbrmation since 
identified models can show diflh-ent dynamical behavior even though 
the training errors are roughly flae same. Theretbre, we validate iden- 
tified models wifla flae criteria such as return maps, flae largest Ly- 
apunov exponent, correlation dimension and bifurcation diagram 
in~tead of SSE. Then we determine the optimal ANN model describ- 
ing the slzstems nonlinear dynamical behavior. 

In this paper, we assxlme flaat not all state variables are measur- 
able, which is often the case in many actual industrial processes. 
We assume only one state variable x3 (temperature) is measurable. 
We try flae three layer feed forward neural network combined wifla 
the dynamic training meflaod based on flae phase space reconstxuc- 
tion meflaod to describe the chaotic slzstem, and determine the opti- 
mal model by adapting only bofla flae number of inputs to the ANN 
and flae number of neurons in flae hidden lever. The inputs to flae 
ANN consist of historical database of the state variable x3 when 
there is no exogenous input (u), and flaose of bofla the state variable 
x3 and contJ-ol input (u) in case exogenous input (u) exists. Each 
neuron in the hidden layer has flae sigmoidal activation function, 

while flae linear activation function is used for flae output layer. The 
biases of the neurons in the input lever are assxlmed to be zero. The 
dynamic tJ-aining meflaod reviewed by Bhat and McAvoy [1990] 
with Levenberg-Marquardt optimization algorithm is used to tJ-ain 
the network, and the training was carried out on DEC Alpha Serv- 
er2100 using MATLAB. 
1. In Case of  No Exogenous  Input 

We now determine the optimal ANN model which best describes 
the chaotic behavior of the E~vstem itself at specified parameter values 
when there is no contJ-ol action (u=0). Test ANN models used can 
be expressed as follows and flae schematic representation of the mod- 
els is shown in Fig. 3: 

xl[k] f(xl[k- 1],xl[k-2] ..... xl[k-m]) 

where m is flae number of delayed inputs, i.e., embedding dimen- 
sion. 

To train the test ANN models, a data set is generated from the 
slzstem equation in section 2 wifla sampling period of 0.001 dimen- 
sionless time when only state variable x3 (temperature) is measxlr- 
able. This corresponds to flae time delay between delayed inputs in 
the test ANN models. SSE is used to tJ-am flae ANN models. First 
we check if flae identified models capture the dynamic behavior of 
flae original E~vstem by return maps. The tLrne series data aye assagned 
to lie on Poincar6 section. Among an enormous number of candi- 
dates having roughly flae same SSE, we found three candidates by 
trial and error which seem to describe the return maps of the ori- 
ginal %~vstem closely. The number of delayed inputs(m) is 8 for all 
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Fig. 4. Second return map of the original system. 
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Table 1. Summary of the largest Lyapunov exponent and corre- 
lation dimension 
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candidates, but the number of hidden nodes(h) is 3, 4 and 5, re- 
sloectively. Fig. 4 denotes the second return map of the original sys- 
tem reconstsucted from the time series of the state variable x3, and 
Figs. 5-7 show the second return maps of the time series generated 
from the candidate models. 

The largest Correlation 
Lyapunov exponent dimension 

Original sy stem 0.00446 1.535 
ANN with h=3 0.03824 2.127 
ANN with h=4 0.002247 1.157 
ANN with h=5 0.0197 1.078 

In the figures, we fred that the overall shape and the location of 
the return maps of the ANN with 4 and 5 hidden nodes are close 
to those of the return map of the original ~vstem. However, because 
the detailed chazacteristics of the return maps are somewhat differ- 
ent, we also calculate the largest Lyapunov exponent and correlation 
dimension to check the matching between the dynamics quantita- 
tively. The calculations were camed out by using the previous meth- 
od, and the obtained values are summarized in Table 1. From the 
results, we can conclude that the ANNs with 8 delayed inputs and 
4 or 5 hidden nodes are the possible models to describe the chaotic 
behavior of the original system. 
2. In Case of  Exogenous Input 

In this case, we validate identified models by checking it'tke mod- 
els can predict the qualitative changes in the nonlinear behavior of 
the original ~vstem as the contsol input is varied. This can be done 
by bifurcation analysis. By checking where and how to bit'urcate 
in bifurcation diagrams, we can determine the number of delayed 
inputs, delayed exogenous (conlrol) inputs and hidden nodes of the 
optimal model which reproduces most faithfully the bifurcation pat- 
tern of the original ~vstem. Test ANN models can be expressed as 
follows and a schematic representation of the models is shown in 
Fig. 8. 

x3[k] f(x3[k-1], x3[k-2] ..... x3[k-m], u[k-1], u[k-2] ..... u[k-n]) 

where m is the number of delayed inputs, and n is the number of 
delayed exogenous inputs. 

To identify the test ANN models, the input/output data set in Fig. 
9 and 10 is generated from the ~vstem equation in section 2. The 
sampling tLrne from the equation is 0.001 dimensionless tLrne, cor- 
responding to the time delay between two successive data points in 

xs[k-1] 

x3[k-21 

x3[k-3] 

x3[k-m] 

u[k-1] 

u[k-2] 

, ( ~  x3[k] 

u[k-n] , ( ~  

Fig. 8. Schematic representation of ANN in case of exogenous in- 
put. 
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the above test ANN models. The input used is composed of ran- 
dom numbers between 0 and 1 that are held constant for 0.01 di- 

mensionless time. 
Among an enormous number of candidates, we found @ee can- 

didates by trial and error which seem to reproduce the bifurcation 
pattern of the original %~s~tem closely. Fig. 11 shows the bifurcation 
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diagram of the original sTstem and Figs. 12-14 denote the bifurca- 
tion diagrams generated from the time series of the candidate mod- 
els when the number of delayed inputs (m) is 8 and the number of 
delayed exogenous inputs(n) is 5, but the numker of hidden nodes(h) 
is 7, 8 and 9, respectively. We observe that the overall shape, the 
scale and the location of bifurcation of the ANN model with 8 hid- 
den nodes are the closest to those of the original sTstem. Note that 
the bifurcation diagrams show somewhat different behavior aJthough 
the SSEs in ANN gaining are roughly 0.002 for all cases. 

CONCLUSIONS 

The identification and validation issues cw_cumng in the chaotic 
~"¢stem with observable s~te variable less than the degrees of free- 
dom of the ~"¢stem are considered. ANN models are used as basis 
models. The technique is demonstrated through the nonisothermaJ, 
irreversible, first-order, series reaction A--+B--+C in a CSTR. In 
chaotic ~wstems, because of the inaccuracies in models and the exist - 
ence of positive Lyapunov exponents, the direct comparison of time 
series and calculation of SSE does not give much intbrmation for 
validation purposes. Therefore, more sophisticated criteria, such as 
retum maps, Lyapunov exponents and correlation dimension in case 
of no exogenous input, and bifi~rcation diagram in case of exoge- 
nous input, should be used to validate the identified models. Then 
from the results, we can determine the optimal number of delayed 
(exogenous) inputs and hidden nodes, leading to the validation of 
the dynamic model. 
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N O M E N C L A T U R E  

X 1 : dimensionless concentrations of species A 
x2 : dimensionless concentrations of species B 
x3 : dimensionless temperature in the reactor 
Da : Damk0hler number 
e : dimensionless activation energy 
S : ratio of the two rate constants 
~; : ratio of activation energies 
B : dimensionless adiabatic temperature rise 
c~ : ratio of heat effects 
[3 : dimensionless heat transfer coefficient 
u : dimensionless coolant bath temperature 
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